Abstract

Archimedes screw turbines are considered a new technology in small- or microscale hydropower. Archimedes screw turbines are easy and practical to operate. However, their manufacturing presents some challenges owing to their screw-shaped design. Most of the previous works on Archimedes screw turbines focused on the turbines’ design, while limited studies were found on their manufacturing processes. In addition, no review work was found on the manufacturability of the Archimedes screw turbine. Hence, this work aims to address this gap by reviewing the various manufacturing methods of Archimedes screw turbines. Moreover, one of the objectives of the study is to assess the sustainable manufacturability of the Archimedes screw turbine. The results show that Archimedes screw turbines are mainly manufactured using conventional manufacturing methods for larger turbines and 3D printers for relatively smaller ones. Traditional methods of manufacturing entailed high skill proficiency, while 3D-printing methods for Archimedes screw turbines are still in their early developmental stages. Sustainable assessment studies have identified additive manufacturing as having a relatively lower environmental impact than conventional manufacturing on turbine blades. These trade-offs must be accounted for in the design and development of Archimedes screw turbines. Moreover, integrating sustainability assessment and the employment of Industry 4.0 enables the smart production and sustainable assessment of AST manufacturability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call