Abstract
PurposeWhile the petroleum industry remains to be the main source of energy in the world, it is responsible for a large amount of resource consumption, environmental emission and safety issues. In this industry, most of the refinery equipment are running out of their designed life cycle, leading to many challenges regarding equipment reliability, products quality, organizations’ profitability, human resources safety and job satisfaction, and environmental pollution, which affects not only the human resources of the refinery but also the people who live in the vicinity. This study aims to model and simulate the maintenance system of an oil refinery to reduce the rotating equipment’s downtime while simultaneously considering the three pillars of sustainability.Design/methodology/approachConsidering the complexity of the system and its inherent dynamism, System Dynamics (SD) approach is applied to model and simulate the maintenance system of an oil refinery, aiming at reducing equipment’s downtime considering the three pillars of sustainability simultaneously. As a case study, the maintenance system of rotating equipment in the Abadan oil refinery of Iran is investigated.FindingsIndividual policies are investigated and categorized into three main groups: economic, social and environmental. The dynamic nature of the system demonstrates that applying combinations of the policies would be more effective than performing individual ones or even a combination of all policies at the same time. The findings show that to manage the maintenance and reliability issues in complex industries, only operational level maintenance strategies would not be helpful; rather, a holistic strategic solution counting different suppliers or even the government policies supporting the operational level maintenance decisions would be effective.Originality/valueThis study is the first which brings the perspective of sustainable policy-making in the SD modeling of a complex maintenance system like that of the petroleum industry. The developed model considers economic, environmental and social objectives simultaneously. Besides, it reflects the role of different stakeholders in the system. Furthermore, the policy-making attempt is not limited to the operational level corrective and maintenance solutions; instead, a comprehensive, holistic view is applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Quality & Reliability Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.