Abstract

Nacre has inspired research to fabricate tough bulk composites for practical applications using inorganic nanomaterials as building blocks. However, with the considerable pressure to reduce global carbon emissions, preparing nacre-inspired composites remains a significant challenge using more economical and environmentally friendly building blocks. Here we demonstrate tough and conductive nacre by assembling aragonite platelets exfoliated from natural nacre, with liquid metal and sodium alginate used as the “mortar”. The formation of GaOC coordination bonding between the gallium ions and sodium alginate molecules reduces the voids and improves compactness. The resultant conductive nacre exhibits much higher mechanical properties than natural nacre. It also shows excellent impact resistance attributed to the synergistic strengthening and toughening fracture mechanisms induced by liquid metal and sodium alginate. Furthermore, our conductive nacre exhibits exceptional self-monitoring sensitivity for maintaining structural integrity. The proposed strategy provides a novel avenue for turning natural nacre into a valuable green composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.