Abstract

Sustainable materials are attracting a lot of attention since they will be critical in the creation of the next generation of products and devices. In this study, hydrogels were effectively synthesized utilizing lignin, a non-valorised biopolymer from the paper industry. This study proposes a method based on utilizing lignin to create highly swollen hydrogels using poly(ethylene) glycol diglycidyl ether (PEGDGE) as a crosslinking agent. The influence of different crosslinker ratios on the structural and chemical properties of the resultant hydrogels was investigated. Pore size was observed to be lowered when the amount of crosslinker was increased. The inclusion of additional hydrophilic groups in the hydrogel network decreased the swelling capacity of the hydrogels as the crosslinking density increases. These precursor materials were carbonised and electrochemically tested for application as electrodes for supercapacitors with capacitance characterized as a function of crosslinker ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call