Abstract

The poor shape of the cavity formed by the planar 5R parallel transplanting mechanism will cause Salvia miltiorrhiza seedlings to tilt while transplanting them. In order to improve the quality of the cavity in Salvia miltiorrhiza planting, this paper analyzed the structural composition and working principle of a planar 5R parallel transplanting mechanism for Salvia miltiorrhiza and established the bidirectional coupling model between the transplanting mechanism and the soil. Based on the model, a regression analysis model and the influence of three factors and five levels were obtained by using the experimental optimization design method, which reflected the relationship between the parameters of the mechanism on the parameters of the cavity. In terms of the optimization objective and regression model, the optimal parameter combination of the transplanting mechanism was obtained by multi-objective parameter optimization. A virtual test of cavity formation was conducted on the transplanting mechanism for Salvia miltiorrhiza with an optimal parameter combination. The results proved that the parameters of cavity output via the regression model and the measurement from the bidirectional coupling model were basically consistent, which verifies the accuracy of our parameter optimization for the transplanting mechanism. This paper provides a new approach to the sustainable improvement of a Salvia miltiorrhiza transplanting mechanism from the perspective of the interaction between the machine and the soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call