Abstract
The hydrogen evolution reaction (HER) plays a crucial role in driving forward the transition to a hydrogen-based economy by providing a means to generate pure hydrogen. However, the efficient and cost-effective production of hydrogen via HER faces significant challenges, particularly at the cathode. To address these challenges, we produced a hybrid material – 2D graphene oxide (GO) sheets coated onto nickel sulfide (NiS) microspheres anchored on Ni Foam (GO@NiS/Ni Foam) using a straightforward synthesis technique. Our research highlights the significant influence of the interaction between GO and NiS on the performance of HER, attributed to the enhancement of electron transport at the interface. Furthermore, the GO@NiS/Ni Foam composite exhibits remarkable durability over extended periods, maintaining its superior functionality for up to 40 h of continuous operation. This underscores its potential for practical implementation in efficient water-splitting processes, offering a promising solution to the challenges hindering widespread adoption of hydrogen technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.