Abstract

The biogenic approach in the synthesis of nanoparticles provides an efficient alternative to the chemical synthesis system. Furthermore, the ecofriendly synthesis of metallic nanoparticles is developing rapidly due to its wide applications in sciences. In this research, metallic silver nanoparticles (AgNPs) were biosynthesized using Sambucus ebulus ( S. ebulus ; AgNPs@ SEE ) extract for the evaluation of efficient antibacterial, anticancer, and photocatalyst activities. The reaction parameters including temperatures, contact time, and AgNO 3 concentration were discussed and optimized. The optimized nanoparticles (AgNPs@ SEE) showed cubic structure, spherical morphology with the average size of 35–50 nm. The photocatalytic performance of AgNPs was assessed by degradation of methyl orange at different concentrations of AgNPs@ SEE (10 and 15 µl) under sun-light irradiation. About 95.89% of the pollutant was degraded (after 11 min), when 10 μl of nanocatalyst used. Also, the degradation of contaminant increased (about 95.47% after 7 min) by increasing the nanoparticle concentration to 20 μl. All in all, the results showed that the percentage of pollutant degradation increased with increasing the concentration of nanocatalyst. Furthermore, anticancer activity of AgNPs@ SEE on human cancer cell lines (AGS and MCF-7), and antibacterial activity on both Gram-positive and Gram-negative microorganisms were studied. The synthesized AgNPs@ SEE exhibited superior performance on cancer cell lines and effective antibacterial properties against Gram-positive microorganisms (like MIC value of 1.5 µg/ml for S. aureus ) than Gram-negative microorganisms. All these investigations revealed that silver nanoparticles synthesized by natural extract have the potential to use as low-cost and efficient nanoparticles for environmental and biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call