Abstract

This paper explores the photocatalytic degradation of Reactive Orange 16 (RO16) dye in textile wastewater employing a novel CuO@A-TiO2/Ro-TiO2 nanocomposite. The nanocomposite was synthesized via a hydrothermal technique, resulting in a monoclinic phase of leaf-shaped CuO loaded on a hexagonal wurtzite structure of rod-shaped ZnO, as confirmed by FE-SEM and XRD analyses. Optical experiments revealed band gap energies of 1.99 eV for CuO, 2.19 eV for ZnO, and 3.34 eV for the CuO@A-TiO2/Ro-TiO2 nanocomposite. Photocatalytic degradation experiments showcased complete elimination of a 100 mg/L RO16 solution (150 mL) after 120 min of UV light illumination and 100 min of sunlight illumination, emphasizing the nanocomposite's efficiency under both light sources. The study further delves into the application of the CuO@A-TiO2/Ro-TiO2 nanocomposite for the degradation of actual textile wastewater samples under sunlight irradiation. The results underscore the nanocomposite's remarkable efficacy in treating RO16 in textile wastewater, positioning it as a promising candidate for sustainable and efficient wastewater treatment applications. This research contributes valuable insights into the development of advanced photocatalytic materials for textile dye degradation in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.