Abstract

There have been significant declines in the perennial grass (PG) content in native and sown pastures across temperate Australia. Not only has this reduced agricultural productivity, it has contributed to more serious degradation, such as loss of soil and biodiversity, decreasing water quality, and dryland salinity caused by rising watertables. Results from the Sustainable Grazing Systems Key Program (SGS) research undertaken at Carcoar on the Central Tablelands of New South Wales were reported by Michalk et al. (2003). This research indicated that grazing management tactics can be used to manipulate pasture composition, thereby changing animal production and water-use patterns. The main grazing tactic investigated was termed a summer grazing rest, where resting was imposed in late spring if PG composition was <50%. Reported in this present paper is an economic framework for valuing the long-term benefits of grazing management tactics. The framework involves the development of a bioeconomic modelling system that links a dynamic programming model with biophysical models for water and environmental processes, soil fertility, pasture growth, livestock energy requirements and the change in pasture species composition. The study concludes that long-term economic returns are improved by strategies, e.g. a summer rest, that lead to an increase in PG composition over time. The study also determined that environmental factors, such as deep drainage, runoff and soil loss, are reduced as perenniality is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call