Abstract

Soil is one the most extracted natural raw materials. The vast expanses of fertile alluvial soils of the Indo Gangetic Plains have long remained as abundant soil resource pool for brick manufacturing and construction sectors. Unmonitored continuous removal of soil is reported to cause depletion of soil reserves, loss of soil fertility and affect crop yield. Excavation and removal of soil from isolated patches of land creates low lying and elevated degraded areas which disrupts normal crop cultivation pattern. Natural gamma-ray spectrometry (NGS) can be used as a non-destructive and rapid geophysical sensing method, for identification and delineation of areas with suitable soils. During this work brick kiln areas were visited to understand soil's availability and extraction pattern. NGS measurements of samples from soil profiles were carried out to find if gamma-ray intensities varied with soil clay content. Soil texture and plasticity of the same samples were obtained following standard testing procedures. Winkler and Plasticity charts were used to assess suitability of the soils. A strong linear relationship between gamma-ray potassium (K) intensity and clay contents of soil profile samples (R2 = 0.88) was observed. NGS based devices can be used to scan soil samples rapidly and log shallow depth boreholes in grid sampling design. The gathered spectral gamma-ray data can be then used to predict and generate high resolution 3D models of soil properties, based on which resource areas of suitable soils can be delineated for long term soil extraction without affecting cultivated areas. This will help in delineating areas restricted for soil extraction, which will not only make soil mining sustainable but also address soil conservation by setting aside large cultivated fertile soil areas untouched. Adopting NGS methods will prevent unsystematic removal of fertile soil and creation of degraded lands. This will ultimately result in efficient soil resource management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.