Abstract

The hybrid composite material, resulting from the fusion of human hair and Kevlar 29 synthetic fiber in a 10:1 ratio, reinforced with epoxy resin using the hand layup technique, underwent meticulous mechanical and thermal testing. The investigation encompassed tensile, flexural, and impact property evaluations, elucidating a notable enhancement in mechanical strength with a diminishing synthetic fiber content. Concomitantly, the composite exhibited commendable heat resistance in heat deflection tests, making it potentially suitable for applications in elevated temperature environments. Water absorption properties were scrutinized, revealing a correlation between reduced synthetic fiber content and diminished water absorption, implying heightened durability in diverse conditions. Microstructure analysis through SEM provided intricate insights into the internal composition. In summation, the composite, featuring a higher proportion of natural fibers and a lower proportion of synthetics, demonstrated superior mechanical attributes, optimal heat resistance, and reduced water absorption, showcasing its applicability in automotive and engineering domains, particularly in the fabrication of vehicle panels and components. The aim of this research represents a significant advancement in composite materials, offering a cost-effective solution that balances mechanical strength and thermal resistance. It suggests the potential for high-performance materials by combining natural and synthetic fibers, promising versatility across various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.