Abstract

Microbial fuel cells (MFCs) recover energy sustainably in wastewater treatment. Performance of non-noble cathode catalysts with low cost in neutral medium is vital for stable power generation. Nitrogen-doped graphene (NG) as cathode catalyst was observed to exhibit high and durable activity at buffered pH 7.0 during electrochemical measurements and in MFCs with respect to Pt/C counterpart. Electrochemical measurements showed that the oxygen reduction reaction (ORR) on NG possessed sustained activity close to the state-of-art Pt/C in terms of onset potential and electron transfer number. NG-MFCs displayed maximum voltage output of 650 mV and maximum power density of 776 ± 12 mW m(-2), larger than 610 mV and 750 ± 19 mW m(-2) of Pt/C-MFCs, respectively. Furthermore, long-time test lasted over 90 days, during which the maximum power density of NG-MFCs declined by 7.6%, with stability comparable to Pt/C-MFCs. Structure characterization of NG implied that the relatively concentrated acidic oxygen-containing groups improved such long-time stability by repelling the protons due to the same electrostatic force, and thus the C-N active centers for ORR were left undestroyed. These findings demonstrated the competitive advantage of NG to advance the application of MFCs for recovering biomass energy in treatment of wastewater with neutral pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.