Abstract

Hybrid energy systems are renewable energy system combined in a complementary fashion to ensure dependable power supply at competitive cost. Diesel generators (DGs) are also added here as a back-up source of supply. For remote areas far from a transmission grid, these systems can provide a reliable and cost-effective supply. Addition of DG could instigate environmental pollution in such remote unpolluted areas. In the present work, optimal sizing of hybrid energy system has been attempted for a remote village cluster of Uttarakhand (India) to make available desired power supply at minimum environmental effluence. Hybrid Optimization Model for Electrical Renewable (HOMER) software from National Renewable Energy Laboratory, USA has been employed to attain the objective. The software offered several feasible systems, ranked on the basis of net present cost (NPC). All such systems are further analysed for emissions they have made in the environment. Hence, the optimal system fulfilling the criteria of minimal environmental degradation with sufficiently minimum NPC has been searched for. In the present work, the most appropriate system offered on the basis of NPC is the one which has five wind turbines (10 kW each), one DG (65 kW) and 25 batteries (6 V, 6.94 kW h each). The NPC of the system is $1,252,018, whereas its initial capital cost and levelised cost of energy (COE) are $94,233 and $0.292/kW h, respectively. After further analysis of all the feasible systems on the basis of environmental effluence, the most feasible system explored is the one which has minimal emissions of various pollutants such as carbon dioxide, carbon monoxide, hydrocarbon, particulate matter, sulphur dioxide and nitrous oxide. The system has been obtained on a compromised NPC of $1,270,921 with a capital cost of $148,133 and COE of $0.296/kW h. Components of the system include five wind turbines (10 kW), a 9 kW PV panel and a 65 kW DG along with 30 batteries (6 V, 6.94 kW h each). The system so obtained would prove to be a feasible, optimally sized and sustainable power supply alternative for remote unelectrified hilly rural area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call