Abstract

Owing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying–dealloying often results in pulverization, electrical contact loss, and unstable solid-electrolyte interphase (SEI) formation, leading to rapid capacity fading. We present a rational encapsulation strategy of a silicon–carbon (Si–C) composite as a high-performance anode material for lithium-ion batteries (LIBs). The Si–C composite material is prepared via a one-pot hydrothermal method by using silicon nanoparticles modified using an etching route and sucrose as a carbon precursor. The proposed Si–C composite material has a meso-macroporous structure and contains a large weight fraction of silicon nanoparticles (40 wt %) encapsulated in a micrometric carbon sphere (∼3 μm). In the composite material, the carbon framework tightly encapsulates the silicon nanoparticles to the interior of the particle, which not only provides electrical conductivity but also decreases the stress/strain of the material during the alloying–dealloying process. The material demonstrates high initial capacity of 1300 mAh g–1, excellent capacity retention of 90% after 200 cycles, and fast charging–discharging capability within 12 min. We believe that the proposed encapsulation strategy here will be helpful in developing a high-energy and low-cost Si–C composite anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.