Abstract

The global population continually increases, and providing power and ensuring sustainable development is becoming increasingly challenging. As a result of increased industrialization and mobility, population growth produces changes in land usage and greenhouse gas emissions. Air quality is influenced by the amount of energy used. The release of carbon dioxide and other pollutants into the atmosphere harms the ecosystem. Although renewable energy sources can help reduce carbon emissions, their unreliability means that energy output is unpredictable, necessitating the development of battery storage to bridge the demand-supply gap. Much attention has been paid to combining renewable energy sources with batteries into rural electrification. The designing and operation of a rural standalone microgrid with electrical loads modeled for the electrification energy deficient village of Uttarakhand (India). The proposed work optimized the component size, cost of energy, net present cost, and pollutant emission reduction in the environment. The optimization is carried out using the gray wolf optimization algorithm. Four different microgrid systems are investigated for the feasibility evaluation of cost-effective rural power. A comparative evaluation of models is provided based on environmental and economic factors. The optimum design has an energy cost of 0.313 $/kWh and a net present cost of $ 65,241.32. The second arrangement, which has the most significant level of renewable energy penetration (90%), has provided a reliable power supply to the region. On the other hand, the proposed design satisfied all constraints while retaining a competitive energy cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call