Abstract

In-situ Fenton like process was highly promising and energy-efficient for treating emerging organic contaminants. However, the challenge in the production and activation of H2O2 faces its practical application. Herein, a photoelectro-Fenton-like (PEF) system was successfully fabricated with BiVO4 thin-film, graphite (C) and PhC2Cu as photoanode, cathode and photocathode, respectively. The ternary system was applied for visible-light degradation of Tetracycline (TC) at a low potential of 0.5 V. H2O2 was generated at the graphite cathode and then activated to produce •OH by Cu(I) from PhC2Cu photocathode. The photo-generated electrons accelerated the Cu(I)/Cu(II) cycle to achieve sustainable PEF reactions. After 150 min of illumination, 97 % TC was degraded in BiVO4|C|PCu system, superior to BiVO4|C and BiVO4|PCu systems. The outstanding stability and reusability of this PEF system was proved by 10 cycles. Moreover, the vulnerable atomic sites of TC molecule were predicated by the Fukui function. Both inhibition zone tests of bacteria and wheat seeds cultivation experiments proved that the constructed PEF system displayed outstanding performance in hampering TC eco-toxicity. For example, the Fv/Fm fluorescence image map demonstrated that the constructed PEF system not only degraded organic pollutants but also lowered their toxicity. Finally, the mechanism of in-situ generation and activation of H2O2 was proposed based on the results of quenching experiments, PL spectra and ESR technique. Overall, this study provides a promising pathway to remediate environmental pollution through constructing a PEF system based on dual cathodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.