Abstract

Abstract The densification of the lower crust in collision and subduction zones plays a key role in shaping the Earth by modifying the buoyancy forces acting at convergent boundaries. It takes place through mineralogical reactions, which are kinetically favored by the presence of fluids. Earthquakes may generate faults serving as fluid pathways, but the influence of reactions on the generation of seismicity at depth is still poorly constrained. Here we present new petrological data and numerical models to show that in the presence of fluids, densification reactions can occur very fast, on the order of weeks, and consume fluids injected during an earthquake, which leads to porosity formation and fluid pressure drop by several hundreds of megapascals. This generates a mechanically highly unstable system subject to collapse and further seismic-wave emission during aftershocks. This mechanism creates new pathways for subsequently arriving fluids, and thus provides a route for self-sustained densification of the lower crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.