Abstract

The carbon net negative conversion of biochar, the byproduct of pyrolysis bio-oil production from biomass, to very high-purity (99.95%), highly crystalline flake graphite that is essentially indistinguishable from high-grade commercial Li-ion grade graphite, is reported. The flake size of the graphite is determined by the physical dimensions of the metal particles imbedded in the biochar, demonstrated in the range of micrometers to millimeters. “Potato”-shaped agglomerates of graphite flakes result when the flake diameter is in the 1–5 μm range. The process is shown to work with a variety of biomass, including raw lignocellulose (sawdust, wood flour, and corn cob) and biomass components (cellulose and lignin), as well as lignite. The synthesis is extremely rapid and energy efficient (0.25 kg/kWh); the graphite is produced with a very high yield (95.7%), and the energy content of its coproduct, bio-oil, exceeds that needed to power the process. The demonstrated process is a tremendous advance in the sustai...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.