Abstract

Sustainable cement-clay composite is used as the support of bimetallic Ni–Cu/Al2O3 catalysts for hydrogen production from methanol steam reforming (MSR) reaction. The results indicate that higher methanol conversion and hydrogen yield can be obtained using composite supported catalysts. The cement-clay composite possesses CO2 absorption capability, which can enhance MSR performance. In the cases of a large proportion of cement, the CO2 concentration in the product is decreased by 1–2% where methanol conversion and hydrogen yield are not reduced. By varying the catalyst compositions such as Ni content, Ni–Cu/Al2O3 loading, and the weight ratio of cement and clay, 100% methanol conversion can be achieved as Ni content and Ni–Cu/Al2O3 loading increase. However, the CO concentration also increases due to the enhanced reverse water gas shift reaction. The results of the prepared 12 cement-clay-supported cases show the best performance with methanol conversion of 100%, hydrogen yield of 2.85 mol·(mol CH3OH)−1, and CO concentration of 5.90%. The scanning electron microscope images indicate no sintering of the spent catalyst, and the thermogravimetric analysis shows low coke formation on the catalyst surface. Overall, cement-clay replacing metal components in catalysts can efficiently reduce costs and intensify hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call