Abstract

Carboxylated cellulose filters were fabricated by oxidation of a cellulose fibrous mat via TEMPO-mediated oxidation. These carboxylated cellulose filters were employed as sustainable filters for removal and recovery of lanthanum ions (La (III)) with high adsorption capability. The surface chemistry of the carboxylated cellulose fibers before and after adsorption of La (III) was investigated systematically. The distribution of La (III) on carboxylated cellulose fibers were explored by EDX mapping approach, which revealed that the adsorption occurred on both the surface and the internal structure of the cellulose fibers. The kinetics and isotherms of the adsorption were conducted to understand the adsorption mechanism of the carboxylated cellulose filter and to learn the maximum adsorption capacity for La (III) which was as high as 33.7 mg/g. The adsorption selectivity of the carboxylated cellulose filter for La (III) was determined when interfering ions including mono- and di-covalent ions were involved. The carboxylated cellulose filter exhibited high adsorption capability and high permeation flux evidenced by the breakthrough curves of the dynamic adsorption of La (III) under an extremely low pressure of 0.07 kPa. A variety of desorption reagents were selected to recover lanthanum from the carboxylated cellulose filter, where the optimized conditions for recovery were explored. Finally, a spiral wound cartridge of the carboxylated cellulose fibrous mat was fabricated and the removal and the recovery of La (III, 2.5 ppm) from massive lanthanum-containing water were demonstrated. It was very impressive that the high rejection ratio of 94.3% was achieved under the low pressure drop of 3.0 kPa remaining throughout the separation process, and the treated solution volume was high up to 21.4 L, which was about six-times higher than that of commercially available nanofibrous adsorption membranes, indicating that the carboxylated cellulose filter could be used as a highly efficient adsorption medium for industrial recovery of rare earth metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.