Abstract

Light-management (LM) films that can regulate transmitted light are significant to diverse fields, such as optoelectronics and energy-efficient buildings. However, for conventional LM films made from petroleum-based polymers, the nonbiodegradability and complicated fabrication process remain a challenge. Herein, we prepare sustainable lignocellulose-based films with excellent light-management capability by facile dissolution and regeneration of wood pulp and the corncob residue from xylitol production (CRXP). The obtained films exhibit high transparency (78%), high haze (61%), and especially remarkable UV-blocking performance (99.94% for UVB and 98.04% for UVA). They achieve consistent indoor light distribution and UV radiation shielding by light management for the application of smart buildings. Furthermore, by spray-coating with SiO2 nanoparticles to construct hierarchical networks, the films are endowed with a superhydrophobic surface with a self-cleaning function to mitigate dust accumulation. Our work provides novel insights into the conversion of lignocellulosic waste to desirable and sustainable functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call