Abstract

The appropriate treatment of chemical warfare agents (CWAs) is essential because of their toxicity and lethality. Metal–organic framework (MOF) catalysts, with the assistance of a volatile small molecule buffer, have been reported to be effective for the destruction of CWAs. However, employing small molecular volatile buffers not only contaminates the catalysts and causes them to lose their activity but also prevents their practical application. In this study, we report a novel polymeric buffer that can enhance the catalytic ability of MOFs without contamination of the catalyst. The macromolecular chain can provide non-flowability to buffer, as well as inhibit catalyst contamination by steric hindrance while maintaining activity as a buffer. The optimized polymer buffer [P(MEMA)43] can effectively degrade nerve-agent simulants (7.7 min of t1/2) in the presence of UiO-66 and preserve its catalytic activity by more than 90% even after three cycles. In addition, the polymeric composite with MOFs coated on a cotton substrate shows excellent detoxification performance in humidified conditions (RH 99%). This fundamental study on a sustainable CWA destruction catalytic system is anticipated to be promising for developing chemical protective textiles against CWAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.