Abstract

Lead-zinc tailings (LZTs) are industrial by-products containing a large number of heavy metals that seriously harm the ecological environment and human health. This study was performed to propose a sustainable and efficient method for immobilizing Pb, Cr, and Cd in LZTs by using solid waste. To better assess the immobilization performance and mechanism, the leaching toxicity, fraction distribution, unconfined compressive strength, environmental risk assessment, and hydration products were explored. The LZTs were mixed and molded with different constituents of ground granulated blast furnace slag (GGBFS) and rice husk ashes (RHAs) at different curing temperatures. Results suggest that ≥99% of the Pb, Cr, and Cd were immobilized mainly in the form of residual fractions in the LZTs. The amounts of Pb, Cr, and Cd in the bioavailable fractions notably decreased by approximately 99.83%, 99.58%, and 97.05%, respectively. After stabilization/solidification (S/S) disposal, Pb, Cr, and Cd showed low to even no risk. The RHAs were effective to stabilize Pb, and GGBFS was effective to stabilize Cr. However, both materials showed almost equal effects to Cd. Ettringite, C–S–H gel, and portlandite were the main hydration products to immobilize Pb, Cr, and Cd, and these hydration products provided a source of strength. Honey-comb or reticular network C–S–H gel possessed higher specific surface area, higher pore volume, and bigger pore size than the other materials. The proposed method could explain the sustainability and efficiency of the S/S of Pb, Cr, and Cd in LZTs by using RHAs. This study opens up new perspectives for disposing heavy metal by using accessible agricultural solid waste (i.e., RHAs) in rural areas, and the solidified block shows certain economic benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call