Abstract
In this study, we synthesized recyclable Fe3O4-functionalized MIL101(Fe) chitosan composite beads for the removal of tetracycline (TC), doxycycline (DC) and ciprofloxacin (CFX) antibiotics from aqueous streams. More than 99% removal efficiency for each antibiotic was achieved at optimum pH, dosage, concentration and contact time. Langmuir adsorption isotherms and pseudo-second-ord er kinetic model were suitable with correlation coefficient values close to 1 for all the antibiotics. Adsorption capacities of 45.33, 33.20 and 31.30mgg-1 for TC, DC and CFX, respectively, were reported by the synthesized Fe3O4-functionalized MIL101(Fe) chitosan composite beads. The Fe3O4-functionalized MIL101(Fe) chitosan composite beads were also tested for their regeneration ability, and a remarkable regeneration ability over up to 5 cycles was observed. The adsorption of TC, DC and CFX on the surface of Fe3O4-functionalized MIL101(Fe) chitosan composite beads was governed by the π-π interaction, H-bonding and electrostatic interaction between the antibiotics and adsorbent due to protonation, deprotonation and cation exchange in the aqueous solution. These results showed a good prospect for applying the reported beads towards removing antibiotics from pharmaceutical industry wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.