Abstract

The rapid urbanization and urban energy transformation worldwide have surpassed the urban global tipping point and poses serious challenges to the current energy systems and infrastructures in global mega cities. The cities consume about 75% of worldwide energy production and produce 80% of CO2 emissions. It is estimated that nearly 68% of the world’s population will be living in urban areas by 2050 as well as 2.5 billion people will be added to the world’s urban population (UN Department of Economic Social Affairs, 2018). The exponentially increasing urbanization poses environmental threats. This calls for research and development of technologies, sustainability assessment tools and public policy instruments with a strong focus on the energy transformation in mega cities. The knowledge base compiled from such an analysis will help in fast-tracking the transition towards equitable, sustainable, and livable cities. This requires a thorough analysis via life-cycle approach for the structure and the feedback of the cities to the implementation of the sustainable energy transformation pathways. To fill these gaps, the overarching goal of this proposed study is to assess the sustainability (i.e., environmental, economic and social) impacts and air quality benefits of urban energy transformation in future smart cities. This will be accomplished via a systematic review of existing literature for following key objectives, (i) To assess the impact of energy efficiency measures in smart cities planning as well as increasing uptake of renewable energy sources and diversification; (ii) To conduct the sustainability assessment and quantify the environmental benefits (i.e., air pollution reduction) of four specific interventions in smart city transport planning including, electrification, automation, vehicle sharing schemes and micro mobility options. The analysis will follow a life cycle thinking approach ; (iii) To examine the structure and the sensitivities of the cities in response to the sustainable energy transformation via modes such as alternative energy use, deployment of green infrastructure and distribution of decentralized energy systems (e.g., Solar photovoltaic technology and battery technology);  (iv) Further, the necessity and effectiveness of the legislative policies for energy transformation in smart cities planning and governance will be evaluated. This proposed study will provide benchmarks to broaden our knowledge and decision-making capabilities to quantify the energy and resource efficiencies of sustainable energy transformation pathways. It will indirectly contribute towards fulfilling and realizing the Sustainability Developments Goals (SDG’s) put forward by the UN. The findings of this study will be helpful for the city planners, local councils as well as the policy makers for a sustainable urban energy transformation for smart cities planning and implementation. This will help to broaden knowledge of different stakeholders for informed decision-making towards energy options with minimal sustainability impacts and greater energy/resource efficacies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call