Abstract

In the literature, the hierarchy of value retention strategies (R-strategies) is utilized to describe the impacts on various circular economy (CE) factors. However, this approach is not suitable for batteries, such as the vanadium flow battery (VFB), due to its technical complexity. The presented model primarily focuses on VFBs, as a deep technical understanding is identified as a fundamental prerequisite for a comprehensive CE analysis. Based on the R-strategies, a new model called the dynamic multi-dimensional value retention strategy model (DDS) is developed accordingly. The DDS divides the R-strategies into three dimensions, as changes in the studied object each have a unilateral influence on the underlying dimensions. In addition, interactions among the R-strategies within the dimensions are observed. Moreover, the model enables the transparent and comprehensible examination of various CE objective factors. Through the model, future adjustments to CE for batteries can be analyzed and quantified. In particular, the analysis yields new insights into individual end-of-life (EoL) strategies, based on new findings regarding the VFB. Consequently, important new perspectives on the VFB are also illuminated. The DDS model is applicable to other complex technologies as well as simple product systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.