Abstract

This study proposes a product sustainability assessment tool (PSAT) that addresses the environmental, health and safety, social, and economic sustainability aspects from a life cycle perspective. The proposed PSAT uses the principles of Green Chemistry, Industrial Ecology, and Green Engineering as guidelines in the development of its assessment criteria. The developed assessment criteria are expressed as easy-to-answer questions covering the environmental, social, health and safety and economic aspects of sustainability. PSAT also incorporates life cycle assessment impact categories and the Circular Economy approach. PSAT comprises an Excel checklist of a questionnaire with a drop-down list of answers to select from describing the sustainability impact of the assessed product. PSAT serves to highlight the sustainability hotspots in a product's life cycle. The questionnaire consists of qualitative and quantitative assessment criteria and contains a total of 97 questions, out of which there are 11 design questions, 22 materials selection questions, 31 manufacturing questions, 24 use questions, and 9 end-of-life questions. The PSAT scoring system enables users to compare the sustainability performance of their products. PSAT aims to aid users in making informed decisions before purchasing a product based on the information on how the product is designed and what materials it contains, how it was manufactured, how it will perform during its use, and what will happen at the end of its useful life. It also aims to aid product manufacturers and designers in incorporating sustainability into all stages of the product life cycle. The PSAT methodology promotes a holistic view of a product life cycle, including the design, materials selection, manufacturing, use, and end-of-life stage.As a case study, PSAT was used to perform a comparative sustainability assessment of two types of 3 MW rated power wind turbines: a direct-drive permanent magnet synchronous generator (PMSG) and a doubly-fed induction generator with a gearbox (DFIG). The results from the sustainability assessment reveal that the DFIG wind turbine had a better sustainability impact than the direct-drive PMSG in the materials selection, manufacturing, and end-of-life life cycle stages. On the other hand, the direct-drive PMSG had a better sustainability impact than DFIG in the life cycle stages design and use. Overall, DFIG demonstrated a better sustainability impact than the direct-drive PMSG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.