Abstract

Biodiesel production growth rate keeps increasing every year with the hope of replacing fossil based liquid fuel which is near exhaustion. Energy efficiency methods coupled with environmental and economic sustainabilities would render biodiesel production attractive. Algal cultivation and oil extraction processes are found to be energy intensive hence exergy destructive. This study presents the thermodynamic feasibility of microalgal biodiesel production plant via exergy analysis. Mathematical modelling with Aspen Plus shows that the centrifuge for algae–medium separation recorded the highest exergy loss of 925 MJ representing 15% of the total exergy loss. 64% of the total exergy input into the whole plant is destroyed to attain the products (biodiesel and glycerin).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.