Abstract

The advanced high-temperature reactor is a new reactor concept that combines four technologies in a new way: coated-particle nuclear fuels traditionally used for helium-cooled reactors, Brayton power cycles, passive safety systems and plant designs from liquid-cooled fast reactors, and low-pressure liquid-salt coolants. The new combination of technologies may enable the development of a large high-efficiency, lower-cost high-temperature (700 to 1,000°C) reactor for electricity and hydrogen production. As the peak reactor coolant temperatures approach 700°C, several technologies (Brayton cycles, passive reactor safety systems, available materials, etc.) work together to improve total system performance while significantly reducing costs relative to those for other reactors. A window of performance and lower capital costs exists between these temperatures and the practical temperature limits of materials. The higher temperatures and efficiency of the Brayton power cycle greatly reduce the total heat rejection compared with that achieved in current light-water reactors and may allow economic heat rejection with dry cooling towers, thus radically reducing the water consumption used in energy production. The option for dry cooling is facilitated by the characteristics of Brayton cycles, which reject heat over a temperature range of 40 to 50°C and thus match the requirements of dry cooling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.