Abstract
As the global economy develops and the population increases, greenhouse gas emissions and wastewater discharge have become inevitable global problems. Conventional wastewater treatment processes produce direct or indirect greenhouse gas, which can intensify global warming. Microalgae-based wastewater treatment technology can not only purify wastewater and use the nutrients in wastewater to produce microalgae biomass, but it can also absorb CO2 in the atmosphere or flue gas through photosynthesis, which demonstrates great potential as a sustainable and economical wastewater treatment technology. This review highlights the multifaceted roles of microalgae in different types of wastewater treatment processes in terms of the extent of their bioremediation function and microalgae biomass production. In addition, various newly developed microalgae cultivation systems, especially biofilm cultivation systems, were further characterized systematically. The performance of different microalgae cultivation systems was studied and summarized. Current research on the technical approaches for the modification of the CO2 capture by microalgae and the maximization of CO2 transfer and conversion efficiency were also reviewed. This review serves as a useful and informative reference for the application of wastewater treatment and CO2 capture by microalgae, aiming to provide a reference for the realization of carbon neutrality in wastewater treatment systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.