Abstract
ABSTRACT: The technique of individual particle analysis conducted by scanning electron microscopy interfaced with automated X‐ray microanalysis (IPA/SAX) was used to characterize suspended particulate matter in New York City's drinking water reservoirs and their tributaries. The study covered a two year period and involved analyses of more than 300 samples. The particle cross sectional area per unit volume (PAV), or area concentration, was measured to account for the observed turbidity, a representation of light scattering property of the studied medium. A simple linear model with a nearly zero intercept was able to explain more than 85 percent of the variation in the measured turbidity. Moreover, the particle assemblage was categorized into generic particle types with distinctive geochemical or geological origins. Thus, PAV compositions in terms of particle types could be apportioned into turbidity components based on the model. Inorganic tripton, dominated by aluminosilicate (clay) and silicate of nonbiological nature, was found to be the major turbidity causing constituent in most cases. With the exception of one reservoir where organic detritus was significant, the predicted inorganic particle turbidity agreed with the measured turbidity within experimental error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.