Abstract

Manganese ferrite (MnFe2O4) nanoparticles initially fabricated using a solvothermal process were coated with conducting polyaniline (PANI) to produce core/shell-structured MnFe2O4/PANI nanoparticles. An electro/magnetorheological (E/MR) fluid was prepared by suspending MnFe2O4/PANI particles in silicone oil, and the rheological properties under either electric or magnetic fields were investigated. Scanning electron microscope and transmission electron microscope provided the particle morphology and size information. X-ray diffraction and Fourier transform infrared spectroscopy were used to analyze the crystal structure and chemical composition of the particles. Chain formation in E/MR fluids under electric or magnetic fields was observed by optical microscopy, and the rheological properties were evaluated using a rheometer. Steady shear and dynamic oscillatory tests were conducted to confirm the effective E/MR characteristics while varying the electric/magnetic field strength. The dielectric properties of the particles measured using an LCR meter were analyzed based on the Cole-Cole model. The E/MR fluids composed of MnFe2O4/PANI showed a reversible and fast electro/magnetic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.