Abstract

Biodegradable copolymers of l-lactide(l-LA) and p-dioxanone(PDO) were synthesized in supercritical carbon dioxide (scCO2) with stannous octoate as the ring-opening catalyst and a fluorocarbon polymer surfactant as an stabilizer. Fine powderous products were achieved when more than 90% (w/w) l-LA was fed. Scanning electron micrographic images and laser diffraction particle size analysis of the products showed the mean diameter of particles greatly increased as the content of PDO increased. The obtained polymers had the number-average molecular weights ranging from 15,000 to 26,000 g mol−1 (polydispersity index ranging from 1.3 to 2.1) according to the gel permeation chromatography measurements. The polymer structure was characterized by NMR spectroscopy, indicating the formation of copolymers. Thermal properties of the obtained polymers investigated using differential scanning calorimetry showed that the morphology of products was directly relevant to the crystallinity of the copolymers. The polymerization of l-LA and PDO copolymers in scCO2 is also proposed as a novel production technique for high-purity, biodegradable polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.