Abstract

Polymerization using Pickering emulsion droplets as reaction vessels is being developed to become a powerful tool for fabrication of hybrid polymer particles with supracolloidal structures. In this paper, two kinds of thermo-sensitive hybrid poly(N-isopropylacrylamide) (PNIPAm) microcapsules with supracolloidal structures were successfully prepared from suspension polymerization stabilized by SiO 2 nanoparticles based on inverse Pickering emulsion droplets. SiO 2 nanoparticles could self-assemble at liquid–liquid interfaces to form stable water-in-oil inverse Pickering emulsion. NIPAm monomers dissolving in suspended aqueous droplets were subsequently polymerized at different temperatures. The hollow microcapsules with SiO 2/PNIPAm nanocomposite shells were obtained when the reaction temperature was above the lower critical solution temperature (LCST) of PNIPAm. While the core–shell microcapsules with SiO 2 nanoparticles' shells and PNIPAm gel cores were produced when the polymerization was conducted at the temperature lower than LCST using UV light radiation. The supracolloidal structures with different cores could be tuned by simply changing reaction temperature, which was confirmed by confocal laser scanning microscopy and scanning electron microscopy. The interesting properties of both microcapsules were their ability of reversibly swelling during drying/wetting cycles and responsive to temperature stimulus. Such functional microcapsules may find applications in double control release system due to the presence of the supracolloidal structures and thermo-sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.