Abstract

The dynamic model of fast freight wagon is established to study the effect of key parameters of the freight wagon on dynamic performance. In order to reduce the wheel-rail dynamic interactions, the parameters such as primary suspension stiffness, arm joint stiffness, and joint stiffness of the anti-yaw damper are optimized. The results indicate that the above suspension parameters have an influence on the fast freight wagon’s dynamic performance. Compared with the simulation results of the original parameters, the wheel-rail vertical force is reduced by 10%, and the wheel-rail lateral force is reduced by 42% and 38% respectively under the straight and curve conditions of the empty vehicle. The wheel-rail vertical force is reduced by 10% and 6%, and the wheel-rail lateral force is reduced by 10% and 16% respectively under the straight and curve conditions of the loaded fast freight wagon. The running stability and safety of the fast freight wagon have been improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.