Abstract
The suspended sediment load (SSL) prediction is one of the most important issues in water engineering. In this article, the adaptive neuro-fuzzy interface system (ANFIS) and support vector machine (SVM) were used to estimate the SLL of two main tributaries of the Telar River placed in the north of Iran. The main Telar River had two main tributaries, namely, the Telar and the Kasilian. A new evolutionary algorithm, namely, the black widow optimization algorithm (BWOA), was used to enhance the precision of the ANFIS and SVM models for predicting daily SSL. The lagged rainfall, temperature, discharge, and SSL were used as the inputs to the models. The present study used a new hybrid Gamma test to determine the best input scenario. In the next step, the best input combination was determined based on the gamma value. In this research, the abilities of the ANFIS-BWOA and SVM-BWOA were benchmarked with the ANFIS-bat algorithm (BA), SVM-BA, SVM-particle swarm optimization (PSO), and ANFIS-PSO. The mean absolute error (MAE) of ANFIS-BWOA was 0.40%, 2.2%, and 2.5% lower than those of ANFIS-BA, ANFIS-PSO, and ANFIS models in the training level for Telar River. It was concluded that the ANFIS-BWOA had the highest value of R2 among other models in the Telar River. The MAE of the ANFIS-BWOA, SVM-BWOA, SVM-PSO, SVM-BA, and SVM models were 899.12 (Ton/day), 934.23 (Ton/day), 987.12 (Ton/day), 976.12, and 989.12 (Ton/day), respectively, in the testing level for the Kasilian River. An uncertainty analysis was used to investigate the effect of uncertainty of the inputs (first scenario) and the model parameters (the second scenario) on the accuracy of models. It was observed that the input uncertainty higher than the parameter uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.