Abstract

Polarization handling in suspended silicon photonics has the potential to enable new applications in fields such as optomechanics, photonic microelectromechanical systems, and mid-infrared photonics. In this work, we experimentally demonstrate a suspended polarization beam splitter on a silicon-on-insulator waveguide platform, based on an asymmetric directional coupler. Our device presents polarization extinction ratios above 10 and 15 dB, and insertion losses below 5 and 1 dB, for TM and TE polarized input, respectively, across a 40 nm wavelength range at 1550 nm, with a device length below 8 µm. These results make our suspended polarization beam splitter a promising building block for future systems based on polarization diversity suspended photonics.

Highlights

  • Exploiting the polarization degree of freedom in silicon photonics has the potential to increase the bandwidth of optical communication systems [1], enable new sensors [2], and provide novel devices for polarization encoding in quantum information processing systems [3]

  • A key device required for such technology is the polarization beam splitter (PBS), which splits two orthogonal polarizations from one input waveguide into two different output waveguides [1, 4,5,6,7,8]

  • Suspended waveguides enable coupling between mechanical motion and optical fields, which leads to devices based on optically-induced motion, so-called optomechanics [9], and motion-induced optical tuning, generally called photonic microelectromechanical systems (MEMS) [10]

Read more

Summary

Introduction

Exploiting the polarization degree of freedom in silicon photonics has the potential to increase the bandwidth of optical communication systems [1], enable new sensors [2], and provide novel devices for polarization encoding in quantum information processing systems [3]. The suspended solid core can be made very thin, and a large fraction of the optical power can propagate outside of the core and be used for sensing of gases or liquids, since suspended waveguides have a perfectly symmetric index difference between the core and the top and bottom claddings [11, 12]. This is interesting for mid-infrared (mid-IR) wavelengths, since the rotational and vibrational absorption lines of many relevant materials lie in the mid-IR [13]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.