Abstract

HypothesisThe attractive interaction between a cationic surfactant monolayer at the air–water interface and vesicles, incorporating anionic lipids, is sufficient to drive the adsorption and deformation of the vesicles. Osmotic rupture of the vesicles produces a continuous lipid bilayer beneath the monolayer. ExperimentalSpecular neutron reflectivity has been measured from the surface of a purpose-built laminar flow trough, which allows for rapid adsorption of vesicles, the changes in salt concentration required for osmotic rupture of the adsorbed vesicles into a bilayer, and for neutron contrast variation of the sub-phase without disturbing the monolayer. FindingsThe neutron reflectivity profiles measured after vesicle addition are consistent with the adsorption and flattening of the vesicles beneath the monolayer. An increase in the buffer salt concentration results in further flattening and fusion of the adsorbed vesicles, which are ruptured by a subsequent decrease in the salt concentration. This process results in a continuous, high coverage, bilayer suspended 11 Åbeneath the monolayer. As the bilayer is not constrained by a solid substrate, this new mimetic is well-suited to studying the structure of lipid bilayers that include transmembrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.