Abstract

We studied the zinc and lead accumulation and tolerance level of suspended cells of four Viola species with different metallophyte statuses: Viola lutea ssp. westfalica (obligate metallophyte), V. tricolor (facultative metallophyte), V. arvensis (accidental metallophyte) and V. uliginosa (nonmetallophyte), in order to determine the correlation between cell and plant tolerance. Cells of all studied species/genotypes were tolerant to metal concentrations applied to the medium for 24, 48 and 72 h, more for zinc than for lead, as estimated by cell viability using the alamarBlue assay.Viable cells of each analyzed species/genotype accumulated zinc and particularly lead in very high amounts after treatment with 2000 μM for 72 h (1500–4500 mg kg−1, 24 000–32 000 mg kg−1, respectively), determined by atomic absorption spectrometry. The bioaccumulation factor values confirmed the cells’ hyperaccumulation strategy. The cell-activated detoxification mechanism, consisting in deposition of metals in the cell wall and vacuoles, as shown by transmission electron microscopy with X-ray microanalysis, allows the cells to survive despite the high level of metal accumulation.These results indicate innate high tolerance to zinc and lead in violets with different metallophyte statuses and also in the nonmetallophyte, suggesting that evolutionarily developed hypertolerance may occurs in this group as a whole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.