Abstract

Environmental contaminant monitoring traditionally relies on targeted analysis, and very few tools are currently available to monitor “unexpected” or “unknown” compounds. In the present study, a non-targeted workflow (suspect screening) was developed to investigate plastic-related chemicals and other environmental contaminants in a top predator freshwater fish species, the northern pike, from the St. Lawrence River, Canada. Samples were extracted using sonication-assisted liquid extraction and analyzed by high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-QTOF-MS). Ten bisphenol compounds were used to test the analytical performances of the method, and satisfactory results were obtained in terms of instrumental linearity (r2 > 0.97), recoveries, (86.53–119.32%), inter-day precision and method detection limits. The non-targeted workflow data processing parameters were studied, and the peak height filters (peak filtering step) were found to influence significantly the capacity to detect and identify trace chemicals in pike muscle extracts. None of the ten bisphenol analogues were detected in pike extracts suggesting the absence of accumulation for these chemicals in pike muscle. However, the non-targeted workflow enabled the identification of diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) in pike extracts. This approach thus can be also applied to various contaminants in other biological matrices and environmental samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.