Abstract

Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call