Abstract
This paper proposes and analyzes a simple surface plasmon resonance (SPR)-based elliptical air hole photonic crystal fiber (PCF) sensor. The fiber structure comprises an analyte channel of the fiber surface coated with a gold layer on the flat surface and the fiber’s external surface. Numerical simulations are conducted using the finite element method (FEM) with an external sensing approach. We found that the thickness of plasmonic material (Au) is the most crucial factor that affects the full width at half maximum (FWHM) and confinement loss amplitude. We also demonstrated that the proposed elliptical air hole SPR-PCF is superior to circular air hole SPR-PCF in terms of confinement loss and FWHM. According to the wavelength interrogation technique, the simulation results show that the designed SPR-PCF sensor can attain a maximum sensitivity of 116,500 nm/RIU and a resolution of 8.58 × 10−7 RIU (RIU: refractive index unit) for the analyte RI of 1.395. We believe the proposed SPR-PCF sensor can be a potential candidate for biomolecular and biological analyte detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.