Abstract

Heterogeneity of contact patterns is recognized as an important feature for realistic modeling of many epidemics. During an outbreak, the frequency of contacts can vary a great deal from person to person and period to period. Contact heterogeneity has been shown to have a large impact on epidemic thresholds and the final size of epidemics. We develop and apply a model which incorporates an arbitrary distribution of contact rates. The model consists of a low-dimensional system of ordinary differential equations which incorporates arbitrary heterogeneity by making use of generating functions of the contact rate distribution. We show further how this model can be applied to the study of simple intervention strategies, such as quarantine of public venues with probability proportional to size. The dynamic model allows us to investigate the effects of gradually implementing such strategies in response to an ongoing epidemic, and we investigate these strategies using data on the contact patterns within a large US city.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.