Abstract
Soil erosion is a serious environmental challenge which persistently diminishes available land resources globally.The impact of soil erosion is more severeat hilly regions where various techniques are deployed to evaluateits risk levels. However, the traditional approach of estimating the magnitude of erosion is tedious, costly, and considerably time consuming. This study was intended to assess the risk associated with soil erosion at hilly areas of Cameron Highlands through geospatial means. The Digital Elevation Model (DEM) with 5m resolution from Interferometric Synthetic Aperture Radar (IfSAR) was utilized to generate the slope inthe highlands. Soil erosion rates was estimated using Universal Soil Loss Equation (USLE), while information about land use and cover were sourced from relevant government agencies. Inversed Distance Weighted (IDW) method of spatial interpolation was applied to predict the values of unknown pixels. The analysis shows that, there is 217.5 km2of the highlands which is greater than 45-degreeaccounted for about 30.5% of the total land area. Moreover, erosion risk assessment indicated that 66.3%, 11.4%, 11.7% and 10.8% are respectively classified as very low, law, moderate and high susceptible to soil erosion. In general, the risk of soil erosion is relatively low and could be attributed to den sevegetation coverage within the study watershed despite the steep slopes where it was found to be at very high risk to soil erosion susceptibility. However, there is need to deploy best management practices to reduce the effect of soil disturbances at hilly areas and prevent excessive soil loss in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering Technology and Applied Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.