Abstract

There is a major problem with the rising occurrence of highly virulent and multiply-resistant strains, including methicillin-resistant Staphylococcus aureus (MRSA), because of their difficult treatment. This study aimed to evaluate the antibacterial and antibiofilm effect of new enterocins (Ent) against potential pathogenic MRSA strains isolated from rabbits. Staphylococci were identified with PCR and screened for methicillin/oxacillin/cefoxitin resistance (MR) using the disk diffusion method and the PBP2' Latex Agglutination Test Kit. Enzyme production, hemolysis, DNase activity, slime production, and biofilm formation were tested in MRSA strains. The susceptibility of MRSA to eight partially-purified enterocins (Ent) produced by E. faecium and E. durans strains was checked using agar spot tests. The antibiofilm activity of Ents was tested using a quantitative plate assay. Out of 14 MRSA, PBP testing confirmed MR in 8 strains. The majority of MRSA showed DNase activity and β-hemolysis. Slime production and moderate biofilm formation were observed in all strains. MRSA were susceptible to tested Ents (100-12,800 AU/mL; except Ent4231). The antibiofilm effect of Ents (except Ent4231) was noted in the high range (64.9-97.0%). These results indicate that enterocins offer a promising option for the prevention and treatment of bacterial infections caused by biofilm-forming MRSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call