Abstract

To isolate Candida spp. from dental prosthesis users' saliva and to evaluate the isolates for the presence of several virulence factors. This research also aimed to investigate the antifungal activity of 3 commercial mouthwashes/oral antiseptic formulations containing 0.12% chlorhexidine, 0.07% cetylpyridinium, or 0.075% cetylpyridinium against planktonic and sessile (biofilm mode) yeast cells. Forty-three Candida yeasts were isolated from 32 of 70 selected patients, and the virulence factors of C. albicans, C. krusei, C. glabrata, C. tropicalis, and C. parapsilosis species were investigated by polymerase chain reaction (PCR) and proteinase in plates. Minimum inhibitory concentration (MIC), and in vitro biofilm assay evaluated the antifungal activity of antiseptics. C. albicans, C. krusei, C. glabrata, C. tropicalis, and C. parapsilosis were detected in mono and mixed cultures. Only C. albicans displayed genes related to adhesion and proteinases (ALS2, ALS3, SAP1, and SAP3). The aspartate proteinase activity was found in 60.46% of isolates. The tested antiseptic formulations exhibited a MIC less than 1.25% toward yeasts in the planktonic mode. According to XTT ((2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay results, most Candida isolates and all mixed cultures formed biofilms within 24 hours. The evaluated antiseptic formulations were also active against biofilms. Most virulence factors investigated here (ALS2, ALS3, SAP1, and SAP3) occurred in the majority of the Candida spp. isolates, especially in C. albicans. The tested mouthwash formulations were effective against all the yeast isolates in both the planktonic and sessile growth modes. Developing alternative therapies that can avoid or control biofilm formation is necessary to prevent oral candidiasis and other Candida spp. infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call