Abstract
BackgroundActinomycetes particularly, Streptomyces species are producing wide variety of natural products with potential bioactivities. The microbial-derived metabolites hold a strong position to combat emerging and re-emerging antimicrobial drug-resistant pathogens. ObjectivesA diverse group of actinomycetes strains were isolated from unexplored regions of mangrove sediment. Further, a polyphasic approach based on 16S rRNA gene sequence analysis and to evaluate their antibacterial potential against a panel of bacterial pathogens and methicillin resistance Staphylococcus aureus (MRSA). MethodsThe mangrove sediment samples were serially diluted with sterile water and plated on inorganic starch agar medium. A total of 20 isolates were pure cultured and 16S rRNA gene sequences were deposited in the public nucleotide databases (GenBank, NCBI). All the isolates were screened for the antibacterial activity by agar overlay method. Further, the susceptibility pattern of MRSA by flow cytometry and fluorescence microscopy was analysed. ResultsThese twenty different isolates were grouped under nine major clad and they shared 95–99% sequence identity to the 16S rRNA gene sequences of the genus Streptomyces in the public nucleotide databases. Among these strains, the isolates namely JRG-02, JRG-03, JRG-04, JRG-10 and JRG-12 exhibited a broad-spectrum antibacterial activity against Methicillin-resistant Staphylococcus aureus(MRSA) and Gram negative bacteria Klebsiella pneumoniae MTCC109. Furthermore, we have characterized the antibacterial compound production and its properties from the isolate JRG-02, a potential drug candidate. The culture conditions and various nutrient components of strain Streptomyces sp. JRG-02 were optimized for enhanced antibiotics production of the isolate. The FT-IR and LCMS spectrum analysis envisaged the chemical nature of the substance. The effect of antibacterial compound on the viability of MRSA was alone examined by flow cytometry (FACS) and fluorescence microscopy analysis. ConclusionsThe present study clearly shows that the survival of diverse inhabitants of Streptomyces in the mangrove sediments. Hence, the mangrove sediment inhabiting strain Streptomyces sp. JRG-02 has potential pharmaceutical activity and genetic diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.