Abstract

Microsporidia are obligate intracellular parasites that affect the population density of many insect pests. In particular, infection with Nosema pyrausta is one of the major mortality factors for the European corn borer Ostrinia nubilalis, the Asian corn borer Ostrinia furnacalis and the adzuki bean borer Ostrinia scapulalis. The purpose of the work is to compare the susceptibility to N. pyrausta and pathogenesis of three species of moths of the genus Ostrinia. Studies conducted over 2 years have shown that in all three species of host insects under laboratory conditions, both during oral infection and transovarian transmission of infection (in the daughter generations of experimentally infected insects), only diplokaryotic spores formed corresponding to the main morphotype of the genus Nosema. Mean lethal time increased with instar of larvae used for infection but didn’t differ between the three species. The rates of transovarial transmission of N. pyrausta were also similar. Thus, all the insect species examined may equally participate in the parasite persistence in nature and serve as model laboratory hosts for parasitological research and mass propagation of the microsporidium.

Highlights

  • A study of the population biology of the European corn moth Ostrinia nubilalis (Hbn., 1796), as a dangerous pest of maize, reveals regular changes in the dynamics of insect populations, indicating the formation and gradual improvement of mechanisms for regulating its numbers in agricultural ecosystems involving maize as the main crop [1]

  • Earlier in the course of studies, in addition to diplokaryotic spores, monokaryotic spores of microsporidia belonging to the same species, namely N. pyrausta, were discovered

  • The formation of additional sporogony is characteristic of various taxa of microsporidia, including a number of species of the genus Nosema, and weather conditions, long-term dynamics of the number of host insects, etc. are indicated as possible factors affecting the morphogenesis of parasites [14,15,16]

Read more

Summary

Introduction

A study of the population biology of the European corn moth Ostrinia nubilalis (Hbn., 1796), as a dangerous pest of maize, reveals regular changes in the dynamics of insect populations, indicating the formation and gradual improvement of mechanisms for regulating its numbers in agricultural ecosystems involving maize as the main crop [1]. Screening the dynamics of O. nubilalis and advanced monitoring methods allow us to assess the harmfulness of the phytophagous pest in novel and established habitats and to analyze the contribution of environmental factors influencing fluctuations in its abundance [2, 3]. For a number of mass species of lepidopteran insects, microsporidia act as natural regulators, including the prevention of outbreaks of mass reproduction of agricultural pests [7], such as the beet webworm Loxostege sticticalis L.,1761 [8]. The entomopathogen reduces the survival rates and life span of insects, retards the development of larvae and fecundity of adults

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call