Abstract

BackgroundRecent studies suggest that people with diabetes or who are at risk of developing diabetes, i.e. prediabetic (preDM), are potentially susceptible to air pollution, but the underlying mechanisms remain unclear because the existing epidemiological studies did not include healthy control groups and only focused on limited health outcomes. We hypothesized that acute exposure to ambient fine particles (PM2.5) will lead to enhanced pulmonary and cardiometabolic changes in preDM than healthy individuals.MethodsWe recruited 60 preDM and 60 healthy individuals from a community of 22,343 adults in Beijing China, and arranged each subject to complete up to seven repeated clinical visits with measures of 6 cardiopulmonary biomarkers, 6 cytokines, 4 blood pressure and endothelial function outcomes and 4 glucose metabolism biomarkers.. Moving averaged daily ambient PM2.5 in preceding 1–14 days was matched to each subject and the PM2.5 associated effect on multiple biomarkers was estimated and compared between PreDM and healthy subjects based on linear mixed effect model.ResultsAll the subjects exhibited significant acute elevation of exhaled nitric oxide, white blood cells, neutrophils, interleukin-1α, and glycated haemoglobin with increased exposure to PM2.5. PreDM subjects had significant stronger adverse changes compared to healthy subjects in 6 cardiometabolic biomarkers, namely, interleukin-2, interleukin-8, systolic and diastolic blood pressure, augmentation pressure, and glucose. The maximum elevation of these 6 biomarkers in PreDM subjects were 8.6% [CI: 4.1–13.3%], 10.0% [CI: 3.9–16.4%], 1.9% [CI: 0.2–3.6%], 1.2% [CI: − 0.1-2.4%], 5.7% [CI: − 0.1-11.8%], 2.4% [CI: 0.7–4.2%], respectively, per an interquartile increase of ambient PM2.5 (61.4 μg m− 3) throughout the exposure window of the preceding 1–14 days. No significant difference was observed for the changes in pulmonary biomarkers between the two groups.ConclusionsPreDM individuals are more susceptible to the acute cardiometabolic effect of air pollution than the healthy individuals. A considerable public health burden can be inferred, given the high prevalence of prediabetes and the ubiquity of air pollution in China and worldwide.

Highlights

  • Exposure to ambient fine particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) has been widely recognised as a major risk factor for disease burden, and is estimated to contribute to the premature mortality of 4.09 million people worldwide annually [1]

  • PM2.5associated health effects are not homogeneous among populations, as previous studies have indicated that certain characteristics, including life stage, genetic polymorphisms, and preexisting cardiovascular and respiratory diseases may increase the susceptibility of populations to the health impacts of PM2.5 [2]

  • A growing number of studies over the past two decades have suggested the susceptibility to health effects of ambient particulate matter among those with diabetes or who are at risk of diabetes, i.e. pre-diabetes [2]

Read more

Summary

Introduction

Exposure to ambient fine particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) has been widely recognised as a major risk factor for disease burden, and is estimated to contribute to the premature mortality of 4.09 million people worldwide annually [1]. A growing number of studies over the past two decades have suggested the susceptibility to health effects of ambient particulate matter among those with diabetes or who are at risk of diabetes, i.e. pre-diabetes (preDM) [2]. Recent studies suggest that people with diabetes or who are at risk of developing diabetes, i.e. prediabetic (preDM), are potentially susceptible to air pollution, but the underlying mechanisms remain unclear because the existing epidemiological studies did not include healthy control groups and only focused on limited health outcomes. We hypothesized that acute exposure to ambient fine particles (PM2.5) will lead to enhanced pulmonary and cardiometabolic changes in preDM than healthy individuals

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call