Abstract
Equine (Equus caballus) deoxyribonuclease I (DNase I) was purified from the parotid gland, and its 1295-bp cDNA was cloned. The mature equine DNase I protein consisted of 260 amino acid residues. The enzymatic properties and structural aspects of the equine enzyme were closely similar to those of other mammalian DNases I. Mammalian DNases I are classified into three types — pancreatic, parotid and pancreatic–parotid-based on their tissue distribution; as equine DNase I showed the highest activity in the parotid gland, it was confirmed to be of the parotid-type. Comparison of the susceptibility of mammalian DNases I to proteolysis by proteases demonstrated a marked correlation between tissue distribution and sensitivity/resistance to proteolysis; pancreatic-type DNase I shared properties of resistance to proteolysis by trypsin and chymotrypsin, whereas parotid-type DNase I did not. In contrast, pancreatic–parotid-type DNase I exhibited resistance to proteolysis by pepsin, whereas the other enzyme types did not. However, site-directed mutagenesis analysis revealed that only a single amino acid substitution could not account for acquisition of proteolysis resistance in the mammalian DNase I family during the course of molecular evolution. These properties are compatible with adaptation of mammalian DNases I for maintaining their activity in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.